翻訳と辞書
Words near each other
・ Stability (short story)
・ Stability 2008
・ Stability and Growth Pact
・ Stability and support operations
・ Stability conditions
・ Stability constant
・ Stability constants of complexes
・ Stability criterion
・ Stability derivatives
・ Stability group
・ Stability Model
・ Stability of Boolean networks
・ Stability of the Solar System
・ Stability Pact
・ Stability Pact for South Eastern Europe
Stability postulate
・ Stability radius
・ Stability spectrum
・ Stability testing
・ Stability theory
・ Stability–instability paradox
・ Stabilization (architecture)
・ Stabilization (medicine)
・ Stabilization (warfare)
・ Stabilization Act of 1942
・ Stabilization clause
・ Stabilization fund
・ Stabilization Fund of the Russian Federation
・ Stabilization of fragile states
・ Stabilization payments


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stability postulate : ウィキペディア英語版
Stability postulate

In probability theory, to obtain a nondegenerate limiting distribution of the extreme value distribution, it is necessary to "reduce" the actual greatest value by applying a linear transformation with coefficients that depend on the sample size.
If X_1, X_2, \dots , X_n \, are independent random variables with common probability density function
: p_(x)=f(x),
then the cumulative distribution function of X'_n=\max\ \, is
: F_=^n \,
If there is a limiting distribution of interest, the stability postulate states the limiting distribution is some sequence of transformed "reduced" values, such as (a_n X'_n + b_n) \,, where a_n, b_n \, may depend on ''n'' but not on ''x''.
To distinguish the limiting cumulative distribution function from the "reduced" greatest value from ''F''(''x''), we will denote it by ''G''(''x''). It follows that ''G''(''x'') must satisfy the functional equation
: ^n = G \,
This equation was obtained by Maurice René Fréchet and also by Ronald Fisher.
Boris Vladimirovich Gnedenko has shown there are ''no other'' distributions satisfying the stability postulate other than the following:
* Gumbel distribution for the ''minimum'' stability postulate
*
* If X_i=\textrm(\mu,\beta) \, and Y=\min\ \, then Y \sim a_n X+b_n \, where a_n=1\, and b_n= \beta \log(n) \,
*
* In other words, Y \sim \textrm(\mu - \beta \log(n),\beta) \,
* Extreme value distribution for the maximum stability postulate
*
* If X_i=\textrm(\mu,\sigma) \, and Y=\max\ \, then Y \sim a_n X+b_n \, where a_n=1\, and b_n= \sigma \log(\tfrac) \,
*
* In other words, Y \sim \textrm(\mu - \sigma \log(\tfrac),\sigma) \,
* Fréchet distribution for the maximum stability postulate
*
* If X_i=\textrm(\alpha,s,m) \, and Y=\max\ \, then Y \sim a_n X+b_n \, where a_n=n^}\, and b_n= m \left( 1- n^}\right) \,
*
* In other words, Y \sim \textrm(\alpha,n^} s,m) \,



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Stability postulate」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.